Therapeutic Role of Mesenchymal Stem Cell Derived Extracellular Vesicles in Female Reproductive Diseases

stem-cells-reproductive-diseases

Reproductive disorders, including intrauterine adhesion (IUA), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are great threats to female reproduction. Recently, mesenchymal stem cells derived–extracellular vesicles (MSC-EVs) have presented their potentials to cure these diseases, not only for the propensity ability they stemmed from the parent cells, but also for the higher biology stability and lower immunogenicity, compared to MSCs. EVs are lipid bilayer complexes, functional as mediators by transferring multiple molecules to recipient cells, such as proteins, microRNAs, lipids, and cytokines. EVs appeared to have a therapeutic effect on the female reproductive disorder, such as repairing injured endometrium, suppressing fibrosis of endometrium, regulating immunity and anti-inflammatory, and repressing apoptosis of granulosa cells (GCs) in ovaries. Although the underlying mechanisms of MSC-EVs have reached a consensus, several theories have been proposed, including promoting angiogenesis, regulating immunity, and reducing oxidate stress levels. In the current study, we summarized the current knowledge of functions of MSC-EVs on IUA, POI, and PCOS. Given the great potentials of MSC-EVs on reproductive health, the critical issues discussed will guide new insights in this rapidly expanding field.

CLICK HERE to read the full article

Safety of intrathecal autologous adipose-derived mesenchymal stromal cells in patients with ALS

To determine the safety of intrathecal autologous adipose-derived mesenchymal stromal cell treatment for amyotrophic lateral sclerosis (ALS).

Participants with ALS were enrolled and treated in this phase I dose-escalation safety trial, ranging from 1 3 107 (single dose) to 1 3 108 cells (2 monthly doses). After intrathecal treatments,
participants underwent standardized follow-up, which included clinical examinations, revised ALS Functional Rating Scale (ALSFRS-R) questionnaire, blood and CSF sampling, and MRI of the neuroaxis.

Twenty-seven patients with ALS were enrolled and treated in this study. The safety profile was positive, with the most common side effects reported being temporary low back and radicular leg pain at the highest dose level. These clinical findings were associated with elevated CSF protein and nucleated cells with MRI of thickened lumbosacral nerve roots. Autopsies from 4 treated patients did not show evidence of tumor formation. Longitudinal ALSFRS-R questionnaires confirmed continued progression of disease in all treated patients.

Intrathecal treatment of autologous adipose-derived mesenchymal stromal cells appears safe at the tested doses in ALS. These results warrant further exploration of efficacy in phase II trials.
Classification of evidence: This phase I study provides Class IV evidence that in patient with ALS, intrathecal autologous adipose-derived mesenchymal stromal cell therapy is safe.

CLICK HERE to read the full article

Autologous Cord Blood Infusions Are Safe and Feasible in Young Children with Autism Spectrum Disorder: Results of a Single-Center Phase I Open Label Trial

Despite advances in early diagnosis and behavioral therapies, more effective treatments for children with autism spectrum disorder (ASD) are needed. We hypothesized that umbilical cord blood derived cell therapies may have potential in alleviating ASD symptoms by modulating inflammatory processes in the brain.

Accordingly, we conducted a phase I, open-label trial to assess the safety and feasibility of a single intravenous infusion of autologous umbilical cord blood, as well as sensitivity to change in several ASD assessment tools, to determine suitable endpoints for future trials. Twenty-five children, median age 4.6 years (range 2.26–5.97), with a confirmed diagnosis of ASD and a qualified banked autologous umbilical cord blood unit, were enrolled. Children were evaluated with a battery of behavioral and functional tests immediately prior to cord blood infusion (baseline) and 6 and 12 months later.

Assessment of adverse events across the 12-month period indicated that the treatment was safe and well tolerated. Significant improvements in children’s behavior were observed on parent-report measures of social communication skills and autism symptoms, clinician ratings of overall autism symptom severity and degree of improvement, standardized measures of expressive vocabulary, and objective eye-tracking measures of children’s attention to social stimuli, indicating that these measures may be useful endpoints in future studies.

Behavioral improvements were observed during the first 6 months after infusion and were greater in children with higher baseline nonverbal intelligence quotients. These data will serve as the basis for future studies to determine the efficacy of umbilical cord blood infusions in children with ASD.

CLICK HERE to read the full article

Human umbilical cord-derived mesenchymal stem/stromal cells: a promising candidate for the development of advanced therapy medicinal products

Umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs) emerge as a perspective for therapeutic use in immune and inflammatory diseases. Indeed, immunomodulatory and anti-inflammatory properties, associated to fewer ethical, availability, and safety issues, position UC-MSCs as a promising active substance to develop medicinal products. Since 2007, UC-MSC-based products are classified as advanced therapy medicinal products (ATMP) according to the European Regulation 1394/2007/EC. This new regulatory status required a total adaptation of stakeholders wishing to develop UC-MSC-based ATMPs.

Cell production in tissue and cell banks has been replaced by the manufacturing of a medicine, in authorized establishments, according to the good manufacturing practices (GMP) specific to ATMPs. After a brief description of UC-MSCs, we described in this review their recent use in a large panel of immune and inflammatory pathologies, including early and late phase clinical trials. Despite the use of the same product, we noticed an important heterogeneity in terms of indication, posology and study design.


Then, we discussed regulatory and manufacturing challenges for stakeholders, especially in terms of process harmonization and cells characterization. Our aim was to point that despite MSCs use for several decades, the development of an UC-MSC-based ATMP remains at this day a real challenge for both academic institutions and pharmaceutical companies.

CLICK HERE to read the full article

Umbilical Cord Mesenchymal Stem Cells in Amyotrophic Lateral Sclerosis: an Original Study

stem-cells-cryopreservation-therapy

Objective Amyotrophic lateral sclerosis (ALS) is still incurable. Although different therapies can affect the health and survival of patients. Our aim is to evaluate the effect of umbilical mesenchymal stem cells administrated intrathecally to patients with amyotrophic lateral sclerosis on disability development and survival. Methods This case-control study involved 67 patients treated with Wharton’s jelly mesenchymal stem cells (WJ-MSC). The treated patients were paired with 67 reference patients from the PRO-ACT database which contains patient records from 23 ALS clinical studies (phase 2/3). Patients in the treatment and reference groups were fully matched in terms of race, sex, onset of symptoms (bulbar/spinal), FT9 disease stage at the beginning of therapy and concomitant amyotrophic lateral sclerosis medications. Progression rates prior to treatment varied within a range of ± 0.5 points. All patients received three intrathecal injections of Wharton’s jelly-derived mesenchymal stem cells every two months at a dose of 30 × 106 cells. Patients were assessed using the ALSFRS-R scale. Survival times were followed-up until March 2020.
Results Median survival time increased two-fold in all groups. In terms of progression, three response types measured in ALSFRS-R were observed: decreased progression rate (n = 21, 31.3%), no change in progression rate (n = 33, 49.3%) and increased progression rate (n = 13, 19.4%). Risk-benefit ratios were favorable in all groups. No serious adverse drug reactions were observed.
Interpretation Wharton’s jelly-derived mesenchymal stem cells therapy is safe and effective in some ALS patients, regardless of the clinical features and demographic factors excluding sex. The female sex and a good therapeutic response to the first administration are significant predictors of efficacy following further administrations.

Traumatic Brain Injury and Stem Cells: An Overview of Clinical Trials, the Current Treatments and Future Therapeutic Approaches

stem-cells-therapy

Traumatic brain injury represents physical damage to the brain tissue that induces transitory or permanent neurological disabilities. The traumatic injury activates an important inflammatory response, followed by a cascade of events that lead to neuronal loss and further brain damage.
Maintaining proper ventilation, a normal level of oxygenation, and adequate blood pressure are the main therapeutic strategies performed after injury. Surgery is often necessary for patients with more serious injuries. However, to date, there are no therapies that completely resolve the brain damage suffered following the trauma. Stem cells, due to their capacity to differentiate into neuronal cells and through releasing neurotrophic factors, seem to be a valid strategy to use in the treatment of traumatic brain injury. The purpose of this review is to provide an overview of clinical trials, aimed to evaluate the use of stem cell-based therapy in traumatic brain injury. These studies aim to assess the safety and efficacy of stem cells in this disease. The results available so far are few; therefore, future studies need in order to evaluate the safety and efficacy of stem cell transplantation in traumatic brain injury.

CLICK HERE to read the full article

Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells

stem-cells-neurological-disease

Stem cells and biomaterials transplantation hold a promising treatment for functional recovery in spinal cord injury (SCI) animal models. However, the functional recovery of complete SCI patients was still a huge challenge in clinic. Additionally, there is no clinical standard procedure available to diagnose precisely an acute patient as complete SCI. Here, two acute SCI patients, with injury at thoracic 11 (T11) and cervical 4 (C4) level respectively, were judged as complete injury by a stricter method combined with American Spinal Injury Association (ASIA) Impairment Scale, magnetic resonance imaging (MRI) and nerve electrophysiology. Collagen scaffolds, named NeuroRegen scaffolds, with human umbilical cord mesenchymal stem cells (MSCs) were transplanted into the injury site. During 1 year follow up, no obvious adverse symptoms related to the functional scaffolds implantation were found after treatment. The recovery of the sensory and motor functions was observed in the two patients. The sensory level expanded below the injury level, and the patients regained the sense function in bowel and bladder. The thoracic SCI patient could walk voluntary with the hip under the help of brace. The cervical SCI patient could raise his lower legs against the gravity in the wheelchair and shake his toes under control. The injury status of the two patients was improved from ASIA A complete injury to ASIA C incomplete injury.
Furthermore, the improvement of sensory and motor functions was accompanied with the recovery of the interrupted neural conduction. These results showed that the supraspinal control of movements below the injury was regained by functional scaffolds implantation in the two patients who were judged as the complete injury with combined criteria, it suggested that functional scaffolds transplantation could serve as an effective treatment for acute complete SCI patients.

CLICK HERE to read the full article